On Para-sasakian Manifolds Satisfying Certain Curvature Conditions with Canonical Paracontact Connection
نویسندگان
چکیده
In this article, the aim is to introduce a para-Sasakian manifold with a canonical paracontact connection. It is shown that φ−conharmonically flat , φ−W2 flat and φ−pseudo projectively flat para-Sasakian manifolds with respect to canonical paracontact connection are all η−Einstein manifolds. Also, we prove that quasi-pseudo projectively flat para-Sasakian manifolds are of constant scalar curvatures.
منابع مشابه
Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection
We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is an η-Einstein manifold.We also investigate some properties of curvature tensor, conformal curvature tensor,W2curvature tensor, concircular curvature tensor, projective curvature tensor, and pseudo-projective curvature tensor...
متن کاملIndefinite Almost Paracontact Metric Manifolds
In this paper we introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it can not admit an (ε...
متن کاملLightlike Submanifolds of a Para-Sasakian Manifold
In the present paper we study lightlike submanifolds of almost paracontact metric manifolds. We define invariant lightlike submanifolds. We study radical transversal lightlike submanifolds of para-Sasakian manifolds and investigate the geometry of distributions. Also we introduce a general notion of paracontact Cauchy-Riemann (CR) lightlike submanifolds and we derive some necessary and sufficie...
متن کاملOn a Lorentzian Para-sasakian Manifold with Respect to the Quarter-symmetric Metric Connection
In this paper, we study certain curvature conditions satisfying by the conharmonic curvature tensor in a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection. AMS Mathematics Subject Classification (2010): 53B05, 53C25
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کامل